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What is spatial transcriptomics?

Spatial transcriptomics, or spatially resolved gene expression, is a quantitative
readout of either whole transcriptome or targeted gene expression mapped to specific
locations In a tissue section, and a proven powerful method to understand cellular
composition and activity in the native tissue context. —10X Genomics

Editorial Published: 06 January 2021

Method of the Year 2020: SPa rzture > nature methods > focus
tl‘al‘ISCl‘iptOI‘niCS Focus 10 December 2024

Nature Methods 18, 1 (2021) | Cite this article Method of the Year 2024: spatial proteomics

50k Accesses | 162 Citations | 246 Altmetric | Me Spatial proteomics is our pick for Method of the Year 2024, for the impact that these
technologies have had on the understanding of the organization, structure and function of

. . . complex tissues, including in global tissue atlas projects.
Spatially resolved transcriptomics methods ai

complex tissues.



Spatial Biology Technologies
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Museum of spatial transcriptomics

Lambda Moses©'and Lior Pachter 12

The function of many biological systems, such as embryos, liver lobules, intestinal villi, and tumors, depends on the spatial
organization of their cells. In the past decade, high-throughput technologies have been developed to quantify gene expression
in space, and computational methods have been developed that leverage spatial gene expression data to identify genes with
spatial patterns and to delineate neighborhoods within tissues. To comprehensively document spatial gene expression tech-
nologies and data-analysis methods, we present a curated review of literature on spatial transcriptomics dating back to 1987,
along with a thorough analysis of trends in the field, such as usage of experimental techniques, species, tissues studied, and
computational approaches used. Our Review places current methods in a historical context, and we derive insights about the

field that can guide current research strategies. A companion supplement offers a more detailed look at the technologies and
methods analyzed: https://pachterlab.github.io/LP_2021/.

t has long been recognized that in biological systems ranging from  Prequel era

the Drosophila embryo to the hepatic lobule, many genes need tobe By “spatial transcriptomics’, we mean attempts to quantify mRNA

properly regulated in space for the system to function. To study the expression of large numbers of genes within the spatial context of
spatial patterns of gene expression, many different spatial transcrip-  tissues and cells. Some important technologies enabling spatial



a Major events in evolution of prequel techniques

1969 radioactive
ISH of rRNA

1969 1971 1973

ISH of globin mMRNAs

Spatial Biology Technologies

1991 in situ
1982 FISH of actin 1989 WM ISH in reporter in
1977 FISH of rRNA mRNA Drosophila C. elegans
1981 11983 1985 1987 1989 1991
1973 radioactive 1982 immunological 1987 1989 ES cell
FISH with biotin- Drosophila enhancer and gene
labeled probe enhancer trap trap in mice
Prequel ROI selection NGS barcoding smFISH ISS




Spatial Biology Technologies

™ = In situ hybridization

MA 14 languages v
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From Wikipedia, the free encyclopedia

In situ hybridization (ISH) is a type of hybridization that uses a labeled complementary DNA,
RNA or modified nucleic acid strand (i.e., a probe) to localize a specific DNA or RNA
sequence in a portion or section of tissue (in situ) or if the tissue is small enough (e.g., plant
seeds, Drosophila embryos), in the entire tissue (whole mount ISH), in cells, and in circulating
tumor cells (CTCs). This is distinct from immunohistochemistry, which usually localizes
proteins in tissue sections.

In situ hybridization is used to reveal the location of specific nucleic acid sequences on
chromosomes or in tissues, a crucial step for understanding the organization, regulation, and

function of genes. The key techniques currently in use include in situ hybridization to mRNA

h ol . BNA b rodiolabol - bl ey RNA in situ hybridization - KRT5 and =
with oligonucleotide and probes (both radio-labeled and hapten-labeled), analysis wit housekeeping gene in human melanoma
light and electron microscopes, whole mount in situ hybridization, double detection of RNAs FFPE tissue section - visualized under

and RNA plus protein, and fluorescent in situ hybridization to detect chromosomal sequences.  Prightfield and fluorescence microscope
DNA ISH can be used to determine the structure of chromosomes. Fluorescent DNA ISH
(FISH) can, for example, be used in medical diagnostics to assess chromosomal integrity. BNAISH. FISH - 3-plex RNA in Jurkat cells | FISH - 4-plex RNA in Hela cell

¢

(RNA in situ hybridization) is used to measure and localize RNAs (mMRNAs, IncRNAs, and miRNAs)

kil B P~ AP R . I S lenl i Ot ol Fipl-h

within tissue sections, cells, whole mounts, and circulating tumor cells (CTCs). In situ hybridization

was invented by American biologists Mary-Lou Pardue and Joseph G. Gall.l'l[2I3]

ful|

Challenges of in-situ hybridization e Multiplex RNA visualization in cells
using ViewRNA FISH Assays
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b Major prequel WM ISH atlases

2002 GenePaint: first
mouse brain ISH atlas

2003 Oryzias 2006
1999 mouse: GXD latipes: MEPD Allen Brain Atlas
: : . ; : 2007 Fly-FISH: S : .
1994 scaling up WM ISH in 2001 C. elegans: 2004 chicken: Drosophila mRNAs at the 2011 mouse genitourinary 2020 Taeniopygia
C. elegans NEXTDB GEISHA Al tract: GUDMAP guttata: ZEBrA

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

1995 first mouse WM ISH 2001 Ciona 2005 first 2007 Xenopus 2017 human and mouse
screen intestinalis: miRNA atlas laevis: Xenbase lung: LungMAP
Ghost
1998 AXelDB: 1,765 clones 2003 Zebrafish: 2006 BDTNP: towards
In Xenopus laevis ZFIN single-cell resolution

2000 Halocynthia

roretzi- MAGEST 2002 D. melanogaster:

BDGP in situ

Prequel ROI selection NGS barcoding smFISH ISS
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€ Major events in evolution of current-era techniques 2013 high-
throughput RCA +
1996 commercial LCM 1SS
1988 ligase SNV 1995 cDNA 2002 combinatorial 2012 Tomo-array of
detection microarray FISH for mRNA mouse brain 2015 MERFISH

1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

1976 LCM 1989 single-cell 1998 smFISH 1999 LCM + 2008 RNA-seq 2014 seqFISH 2019 GeoMX DSP
cDNA ampilification microarray
1989 FISH with 1998 Solexa founded 2016 spatial
combinatorial transcriptomics
barcoding

Prequel ROI selection NGS barcoding smFISH ISS
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Min spot
First Max # diameter (u

Method published Category genes m)
voxelation 2002-01-31 ROI Tx wide NA

selection
PA-GFP 2010-11-11 ROI Tx wide NA

selection s

203 entries!

SRM seqFISH 2012-06-02 smFISH 32 single cell
Tomo-array 2012-09-18 ROI Tx wide NA

selection
iceFISH 2013-02-16 smFISH 20 single cell




How can mRNA be seen?

Method 1: Sequencing

Cell Break Capture Sequencing
T~ o TN~ ~—
mRNA 1 AUCG..
L . o ~ wen3 ccaa. .
=< S — - ~ s ~ : —_— mMRNA 4 UCGC...
e~ ~ ~ ~—
- ~— T~

* Captured all types of mMRNAs (all genes)
* Lost spatial information

Slide From Fangming Xie



How can mRNA be seen?

Method 2: Staining and |maging * Captured one types of mMRNA (1 gene)

* Preserved spatial information

Cell Clear FISH Imaging
-9 &
e = L
&
~ . T o
—~——— N e~ TN e ~—
~— TN TN
MRNA
Probes —’

Slide From Fangming Xie



Two major branches of technologies:

sequencing-based vs imaging-based assays

* Imaging-based:
seqgFISH (sequential Fluorescence In Situ Hybridization)
MERFISH (Multiplexed Error-Robust FISH)

STARmap (Spatially Resolved Transcript Amplicon Readout Mapping)
CosMx (NanoString CosMx Spatial Molecular Imager)

10x Genomics Xenium — despite being from 10x, this is actually imaging-based, not sequencing-based.
It uses in situ hybridization and imaging (similar to CosMx)

e Sequencing-based:
Slide-seq — uses barcoded beads on a surface to capture RNAs

10X Visium— Sequencing-based, array of barcoded capture spots on slides; whole-transcriptome coverage at
spot resolution.



Number of genes (log scale)

Spatial Transcriptomics Methods: Resolution vs Gene Throughput Vo (100

X
Slide-seq
- X
- CosMx
X
Xenium (10x)
X
MERFISH STARmMap
L X X
seqri>H Generated by GPT-5
X
10! 100 10t

Spatial resolution (um, log scale)



Spatial Transcriptomics Methods Summary

Method

| MERFISH

seqFISH
STARmap
Xenium (10x)
CosMx

Visium (10x)

Resolution (um)

0.1

0.2

0.3

0.3

0.5

10

55

Genes (typical)

~1,000

~250

~1,000

~4,000

~6,000

~10,000

~18,000

Approx. Cellular Resolution
Sgbcellulgr / si_rjgle molecule
Subcellular / single molecule
Subcellular / single cell

Subcellular / single cell

Single cell [ subcellular

Near single-cell (~1 cell/spot)

~1-10 cells/spot (often dozens)

Summarized by GPT-5



Slide-seq
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Fig. 1. High-resolution RNA capture from tissue by Slide-seq.
(A) (Left) Schematic of array generation. A monolayer of randomly
deposited, DNA barcoded beads (a "puck”) is spatially indexed

by SOLID sequencing. (Top right) Representative puck with
sequenced barcodes shown in black. (Bottom right) Composite
Image of the same puck colored by the base calls for a single base
of SOLID sequencing. (B) Schematic of the sample preparation
procedure. RT, reverse transcription. (C) (Top left) t-distributed
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Slide-seq: A scalable technology
for measuring genome-wide
expression at high spatial
resolution (Rodriques et al. 2019
Science )



Error Detection
Image 1 Image 2 ImageN and/or Correction  Decoded Image

Spatially resolved, highly
multiplexed RNA profiling in single
cells (Chen et al. 2015 Science)

Expression Noise

Decode RNA
|dentity

Probability

Copy Number
Expression Covariation

Hybridize,
Image, &
Photobleach
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Fig. 1. MERFISH: A highly multiplexed smFISH approach enabled by combinatorial labeling and
error-robust encoding. (A) Schematic depiction of the identification of multiple RNA species in N rounds
of imaging. Each RNA species is encoded with a N-bit binary word, and during each round of imaging, only
the subset of RNAs that should read 1 in the corresponding bit emit signal. (B to D) The number of
addressable RNA species (B); the rate at which these RNAs are properly identified—the “calling rate” (C);
and the rate at which RNAs are incorrectly identified as a different RNA species—the “misidentification
rate” (D); plotted as a function of the number of bits (N) in the binary words encoding RNA. Black indicates
a simple binary code that includes all 2V-1 possible binary words. Blue indicates the HD4 code in which the
Hamming distance separating words is 4. Purple indicates a modified HD4 (MHD4) code where the
number of 1 bits are kept at four. The calling and misidentification rates are calculated with per-bit error
rates of 10% for the 1-0 error and 4% for the O-1 error. (E) Schematic diagram of the implementation of a
MHD4 code for RNA identification. Each RNA species is first labeled with ~192 encoding probes that
convert the RNA into a specific combination of readout sequences (Encoding hyb). These encoding probes
each contain a central RNA-targeting region flanked by two readout sequences, drawn from a pool of N
different sequences, each associated with a specific hybridization round. Encoding probes for a specific
RNA species contain a particular combination of four of the N readout sequences, which correspond to the
four hybridization rounds in which this RNA should read 1. N subsequent rounds of hybridization with the
fluorescent readout probes are used to probe the readout sequences (hyb 1, hyb 2, ..., hyb N). The bound
probes are inactivated by photobleaching between successive rounds of hybridization. For clarity, only one
possible pairing of the readout sequences is depicted for the encoding probes; however, all possible pairs
of the four readout sequences are used at the same frequency and distributed randomly along each
cellular RNA in the actual experiments.



10x Genomics and 10x in Spatial Transcriptomics

* Founded in 2012, headquartered 1in Pleasanton, California.

* A leading biotechnology company specializing in single-cell and spatial technologies.

* Known for creating the Chromium platform (single-cell RNA-seq, ATAC-seq,
immune profiling).

* Leveraged 1ts success 1n single-cell genomics to expand 1nto spatial biology.

* Visium (launched ~2019): sequencing-based platform for spatial transcriptomics at
mesoscale resolution (~355 pum spots). 10x Genomics Visium Page

* How 1t works | Visium Spatial Gene Expression Solution (2mins video)



https://www.10xgenomics.com/spatial-transcriptomics
https://www.youtube.com/watch?v=VwNk4d-0RJc
https://www.youtube.com/watch?v=VwNk4d-0RJc

10x Genomics and 10x in Spatial Transcriptomics

* Founded in 2012, headquartered 1in Pleasanton, California.

* A leading biotechnology company specializing in single-cell and spatial technologies.

* Known for creating the Chromium platform (single-cell RNA-seq, ATAC-seq,
immune profiling).

* Leveraged 1ts success 1n single-cell genomics to expand 1nto spatial biology.

* Xenium (released ~2022): imaging-based platform for 1n situ detection of RNA at
subcellular resolution with targeted panels. 10x Genomics Xenium Page



https://www.10xgenomics.com/xenium

Datasets

Explore and download datasets created by 10x Genomics.

Chromium Single Cell - Featured Visium Spatial - Featured Xenium In Situ - Featured

Visium HD 3' Gene Expression
320k scFFPE From 8 Human

Tissues 320k, 16-Plex

Library, Ovarian Cancer (Fresh 'j.’*f Expression data for FFPE Human

Frozen) S4@%. =, Renal Cell Carcinoma

Top searches PBMC Xenium HD GEM-X Flex Cell Segmentation Breast Cancer Mouse Brain Brain Lung FFPE

Filter datasets <l Datasets (Showing 755 datasets) Product Species Sample type Cells or nuclei Preservation

10w Panamiae mrnsl sl
10X Genomics product

Visium HD 3' Gene Expression Library, Mouse HD 3’ Spatial Gene

Platform + _ , S Mouse Brain N/A Fresh Frozen
Brain (Fresh Frozen) Expression v1.0
Product +
Visium HD Spatial Gene Expression Library, HD Spatial Gene . ,
: : " _ W Human Pancreas N/A FFPE
Chemistry version s Human Pancreas (FFPE) Expression v1.0
Additional application +

Visium HD Spatial Gene Expression Library, _
HD Spatial Gene

O
| i \J /_J' A ,\
Seftware L Human Breast Cancer (Fresh Frozen), Ultima T W Human Breast N/A Fresh Frozen



Part 2 Spatial Transcriptomics Analysis

Welcome
Background v
1 Introduction

2 Spatial omics

3 Python interoperability

4 Data infrastructure

5 Importing data
Example dataset |

¥ Sequencing-based
E platforms

7 Introduction

8 Reads to counts
9 Quality control
10 Intermediate processing

11 Deconvolution
12 Workflow: Visium DLPFC
13 Workflow: Visium CRC
14 Workflow: Visium HD

i Imaging-based
 platforms

i 15 Introduction

16 Segmentation

17 Quality control

18 Intermediate processing
19 Neighborhood analysis

20 Cell-cell communication
21 Workflow: Xenium
| Pltfrminpednt v
analyses

22 Dimensionalitv reduction

Orchestrating Spatial Transcriptomics Analysis

with Bioconductor

Published: August 6, 2025

Welcome

This is the website for the online book Orchestrating Spatial
Transcriptomics Analysis with Bioconductor.

This book provides reproducible examples and discussion on
computational analysis workflows for spatial omics data using
Bioconductor in R. The book contains chapters describing individual
analysis steps as well as extended workflows, each with examples
including R code and datasets. In some examples, R code is also
integrated with Python tools.

The book is organized into several parts, consisting of introductory
materials, and analysis steps and workflows for the two main streams
of spatial omics data: sequencing-based and imaging-based.

Additional materials on analysis workflows for single-cell (non-spatial)
data, as well as further introductory materials on R and Bioconductor,
can be found in the related book Orchestrating Single-Cell Analysis with

Bioconductor (OSCA)

Bioconductor

https://Imweber.org/OSTA/


https://lmweber.org/OSTA/

Data Structure
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Typical Spatial transcriptomics analysis workflows

Data
import

Quality
control

Preprocessing steps

Normalization /
transformation

Downstream analyses

Feature
selection

Dimensionality
reduction

Clustering

Seurat tutorial: https://satijalab.org/seurat/articles/seuratd spatial vignette 2

Differential
expression



https://satijalab.org/seurat/articles/seurat5_spatial_vignette_2

Feature selection: Highly variable genes (HVGs)

FindVariableFeatures()

“We next calculate a subset of features that exhibit high
cell-to-cell variation in the dataset (i.e, they are highly
expressed in some cells, and lowly expressed In others).
We and others have found that focusing on these genes in
downstream analysis helps to highlight biological signal In
single-cell datasets.”

It also just makes the computation a lot easier
Cuts down on multiple testing

Adapted from Kelly Street’s slide



Feature selection: Spatially variable genes (SVGs)

Selected SVGs: human DLPFC

[ MOBP PCP4 SNAP25 { nn SVG }

e Rank genes by
(spatial) variabllity

counts e Selectthe top N
genes

HBB IGKC NPY

| + takes advantage of
b it oK O spatial information

; , ' - could struggle with
gL || R T very disperse cell

Slide from Kelly Street




Spatially Variable Genes

Selected SVGs: human DLPFC

MOBP PCP4 Table 1 | Summary of characteristics of methods included in
the performance evaluations and runtime comparisons
En :"5;,,, , Method Spatial Flexible length Covariates for Runtime
i"":-. information scale spatial
' _ : ; parameters domains
L e nnSVG o o o L)
i mxi SPARK-X @ ® ° ®
il Fore HVGs O O O ®
b counts ,
S Moran's| @ O O O
R 600
Yo SpatialDE ® ® @ O
SPARK [ [ [ ] O
HBB IGKC NPY For each method, the columns indicate whether (@) or not (O) the method: (i) takes spatial
information into account, (ii) fits models with flexible gene-specific length scale parameters, (jii)
; .‘ . : < provides an option to include covariates for spatial domains in the models, and (iv) provides fast
: . : S e runtimes. Half-filled circles (©) indicate intermediate scores. The scalable methods are shown in
e g g i ‘ % o the first 4 rows, and the earlier cubically scaling methods (SpatialDE and SPARK) are shownin the
i : : o g % ; . ¢ 0 last 2 rows.
: '-'.! - L
: j‘ = - Cpiadt . |
3 " ..‘ = ".. ; -_:'“._,: ;.:.’:::._ 10 . .= .;. v ﬂ "af
:::. 5 : : ':’:.".. y ::':.:;‘ / "::;.; o ..:..“ i ‘ . | ¢
G e | R NNSVG: Lukas, etc., 2023, Nat Comm




Dimensionality Reduction

lots of cells
lots of cells

V]
O
lots of cells - PCA
T
$ 2
@ . A
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© variable R —— i
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~N
2

all the genes

lots of cells

N UMAP

Slide from Kelly Street



Dimensionality Reduction

lots of cells

lots of cells

raw

counts

normalized

hundreds of genes

lots of cells

N UMAP

Slide from Kelly Street



Distills the signal(s) In
the data

Can identify multiple

5 e axes of variation
2 v ks TEL
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Image: Serafeim Loukas
https://towardsdatascience.com/pca-clearly-explained-how-when-why-to-use-it-and-feature-importance-a-guide-in-python-7c274582c37¢€/



Fig. 1: Method schematic of SpatialPCA and simulation results.

/7 Tissue Location

nlocators Y, ,
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v SpatialPCA
Distance Kernel
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Z~ MN(0,Y)
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dxn =
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Loading Latent Error
Expression Matrix Factors Term

Clustering Analysis Spatial Imputation Trajectory Inference

Spatial Domain Detection High-resolution Spatial Map Construction Developmental Trajectory Analysis

Shang, L., Zhou, X. Spatially aware dimension reduction for spatial transcriptomics. Nature Communications, 2022.



Projected Spatial Factor Model

/lV > stat > arXiv:2506.01098

Statistics > Methodology

[Submitted on 1 Jun 2025]

ProjMC?: Scalable and Stable Posterior Inference for Bayesian Spatial Factor Models with Application
to Spatial Transcriptomics

Lu Zhang

Factor models exhibit a fundamental tradeoff among flexibility, identifiability, and computational efficiency. Bayesian spatial factor models, in particular, face pronounced
identifiability concerns and scaling difficulties. To mitigate these issues and enhance posterior inference reliability, this work proposes Projected Markov Chain Monte Carlo
(ProjMC?), a novel Markov Chain Monte Carlo (MCMC) sampling algorithm employing projection techniques and conditional conjugacy. ProjMC? is showcased within the
context of spatial factor analysis, significantly improving posterior stability and MCMC mixing efficiency by projecting posterior sampling of latent factors onto a subspace of a
scaled Stiefel manifold. Theoretical results establish convergence to the stationary distribution irrespective of initial values. Integrating this approach with scalable univariate
spatial modeling strategies yields a stable, efficient, and flexible modeling and sampling methodology for large-scale spatial factor models. Simulation studies demonstrate
the effectiveness and practical advantages of the proposed methods. The practical utility of the methodology is further illustrated through an analysis of spatial transcriptomic
data obtained from human kidney tissues, showcasing its potential for enhancing the interpretability and robustness of spatial transcriptomics analyses.

Comments: 32 pages, 5 figures

Subjects: Methodology (stat.ME) —I- —I—

Cite as: arXiv:2506.01098 [stat.ME] Y(S) p— ﬁ X(S) —I— A f(S) —I— € (S) p S e D p
(or arXiv:2506.01098v1 [stat.ME] for this version)
https://doi.org/10.48550/arXiv.2506.01098 €

Submission history analytically tractable, explainable, scalable, UQ

From: Lu Zhang [view email]
[vl] Sun, 1 Jun 2025 17:46:03 UTC (27,039 KB)



Constructing spatial neighbor networks Integrating gene expression and
spatial location information

Spatial transcriptomics Gene expressions Graph attention auto-encoder
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GraphST
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Clustering / Domain Detection

BayesSpace

e

Clustering finds groups of cells
with similar gene expression
patterns.

ter

AEEEE O
NOOTHEWN— O

Domain detection finds spatial
regions with similar gene
expression patterns.

“! Slide from Kelly Street



Clustering / Domain Detection

Ground truth
(Data9; slice 151673)

Louvain Leiden SpaGCN SpaGCN(HE) BayesSpace stLearn SEDR
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Deconvolution

Spatial Transcriptomics s
P ¥ Robust Cell Type Decomposition (RCTD)
: “ True pixel cell type and gene expression profile ™, /~  Opserved pixel ) Spatial map of cell types
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Attraction/Avoidance

| AR A o8 {imcRtools}
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Neighborhood Analysis

Spatial Layout

® cluster 1
cluster 2

cluster 3

cluster 5
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® cluster 4
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Neighborhood Analysis

All Cells Neighbors of
® cluster 4
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